Motor Research in the Power Electronics and Electric Machinery Group

Jason Pries

Outline

- PEEM Group Overview
 - Power Electronics
 - Electric Machines (Motors)
 - Materials Modeling Research
 - Rare Earth Free/Reduced Electric Machines
- Recycled Hard Disk Drive Magnet Motors

Additive Manufacturing

Questions and Discussion

Accelerating Power Electronics and Electric Motors Technologies

Power Electronics

- Circuit topologies
- Wired and wireless vehicle charging systems
- Wide bandgap devices
- Power quality and utility interconnects
- Advanced Manufacturing

Electric Motors

- Innovative designs
- High-performance non-permanent magnet motors
- Permanent magnet motors
- Advanced materials
- Controls

Packaging

- High efficiency packages
- High temperature packaging
- Highly integrated smart power module

Applied R&D

- Transportation
- Grid
- Renewables

Unique solutions and facilities to meet application needs

Innovative. cost-effective **PEEM** solutions

WBG DATA Facility

Power Device Packaging Laboratory

Wireless Vehicle Charging

Novel Flux Coupling Motor

Electric Machine Design and Optimization

Design optimization using gradient and evolutionary algorithms

Motor/Generator efficiency mapping

Rotor mechanical stress analysis

Stator thermal analysis

Eddy current losses in magnets and stranded conductors

Advanced Modeling Techniques

Awarded an allocation of supercomputer 2.25 million core hours 2D FEA code successfully working

Stress Distribution

- Function of cutting/stamping method
- Influenced by mechanical fastening
- Impacted by rotation and other forces

Advanced FEA Modeling Tool

Bulk Characterization

- Traditional Epstein and ring specimen testing at various temperatures
- Custom analysis of rotational losses, anisotropic magnetization/loss, PWM, etc.

Localized Magnetic Properties

- Function of stress distribution
- Magnetization and loss characteristics are not homogeneous

Empirical Magnetic Domain Analysis

- Traditional Epstein and ring specimen testing
- Impacts of stress, pinning, etc. upon domain wall movement, and ultimately magnetization/loss properties.

Theoretical Magnetic Domain Analysis

- · Fundamental theory to confirm and supplement empirical findings.
- Indirect link to FEA too computationally intensive for direct use in FEA.

Slide Credit: Tim Burress

Hysteresis and Eddy Current Loss Modeling

M19 silicon steel B-H loop at 5Hz (left) and 500Hz (right)

Ring core field in axisymmetric coordinates

Ferrite toroid and associated Everett function (right)

Preisach hysteresis model animation

Ferrite Interior Permanent Magnet Machine

Key Challenges

- Low Energy Product Magnet
- Rotor Mechanical Strength

Results

- 103kW peak power
- Significant increase in power density

Ferrite IPM prototype in housing

Awards

- DOE VTO Distinguished **Achievement Award**
- UT-Battelle Team Research Accomplishment

Ferrite motor dynamometer testing

Switched Winding Synchronous Reluctance Machine

Key Challenges

- Constant power operation
- Torque density

Results

- 65kW Series
- 85kW Parallel

Simulated Two-Mode Power-Speed Characteristics

Winding Switching Configuration

Synchronous Reluctance Machine Lamination Stack

Non-Rare Earth Electric Motors

Challenges

- Power Factor
- Reliability

Energy product?

- Coercivity is important for automotive applications
- Ways to work around low remnant flux density
- Would trade Br and BHmax for Hci

High Energy Product AlNiCo

 Redesign of ferrite motor using hypothetical AlNiCo material (simulation)

Peak Torque	200N-m
Peak Power	148kW
Torque Density ³	25.6N-m/L
Power Density ³	19.0kW/L
Specific Torque ³	7.32N-m/kg
Specific Power ³	4.95kW/kg
Characteristic Current	200Arms
Peak Demagnetizing Field ⁴	2300Oe

³Based on Active Length + End Turn + Cooling Jacket volume ⁴During short circuit operation, averaged over cross section

Recycled Hard Drive Magnet Motors

- Can we repurpose magnets designed for other applications?
 - NdFeB
 - Unique shape and magnetization pattern for motor applications

Dual Rotor Axial Gap Motor

- Balanced axial forces
- Reduced torque ripple by rotor angular displacement
- Difficult construction

Dual Stator Axial Gap Motor

- Balanced axial force
- Reduced torque ripple by stator angular displacement
- Easier construction

Printed Magnet Motors

- Motor manufactures prefer simple magnet shapes due cost
 - Tooling
 - Grinding/Finishing
- Potential untapped optimization benefits using unconstrained magnet geometry

Printed Magnet Motors

1.6 1.4 ∑ 1.2 0.6 Original Magnet Data Printed Magnet Data Original Magnet Regression 0.2 0.2 0.3 Motor Speed [p.u.]

- Replace sintered ferrite with printed **NdFeB**
- 3D printed small mounting plates for back-to-back testing

New Materials

Printed Laminations

- Stators
- Inductors
- Induction Machine Rotors

Magnetic Characterization

- Ring Test
- B-H Curve
- Core Losses

Next Generation Motors

Displace Existing Materials?

- Materials, manufacturing drive topological decisions
- Well optimized designs push materials to their limits

Displace Existing Designs

- New materials
- New designs

Questions and Discussion?

